Molecular distance geometry methods: from continuous to discrete
نویسندگان
چکیده
منابع مشابه
Molecular distance geometry methods: from continuous to discrete
Distance geometry problems arise from the need to position entities in the Euclidean K-space given some of their respective distances. Entities may be atoms (molecular distance geometry), wireless sensors (sensor network localization), or abstract vertices of a graph (graph drawing). In the context of molecular distance geometry, the distances are usually known because of chemical properties an...
متن کاملFrom Discrete to Continuous
From a development of an original idea due to Schwinger, it is shown that it is possible to recover, from the quantum description of a degree of freedom characterized by a finite number of states (i.e., without classical counterpart) the usual canonical variables of position/momentum and angle/angular momentum .
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Transactions in Operational Research
سال: 2010
ISSN: 0969-6016
DOI: 10.1111/j.1475-3995.2009.00757.x